

September 2, 2010
Alphabetical List of Contributing Authors:

Jacques Beaudry-Losique, US Department of Energy (DOE)
Jocelyn Brown-Saracino, Sea Grant Fellow
 Patrick Gilman, DOE
 Michael Hahn, DOE
 Chris Hart, PhD, DOE
 Jesse Johnson, Sentech
 Megan McCluer, DOE
 Laura Morton, DOE
Brian Naughton, PhD, New West
 Gary Norton, Sentech
Bonnie Ram, Energetics
Wendy Wallace, Energetics
Executive Summary

Creating an Offshore Wind Industry in the United States: A Strategic Work Plan for the United States Department of Energy was prepared by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), Wind and Water Power Program to outline the actions that it will pursue to support the development of a world-class offshore wind industry in the United States. The Strategic Work Plan is an action document that amplifies and draws conclusions from a companion report, Large-Scale Offshore Wind Energy for the United States: Assessment of Opportunities and Barriers (NREL 2010). In FY 2011, DOE will initiate a formal activity, titled the Offshore Wind Innovation and Demonstration (OSWInD) Initiative, to promote and accelerate responsible commercial offshore wind development in the U.S., guided by this Strategic Work Plan.

Key Points

- Offshore wind energy can help the nation reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and stimulate economic revitalization of key sectors of the economy.
- Key barriers to the development and deployment of offshore wind technology include the relatively high cost of energy, technical challenges surrounding installation and grid interconnection, and the untested permitting requirements for siting wind projects in federal and state waters.
- The Strategic Work Plan lays out the details for the OSWInD Initiative, which will work to lead the national effort to overcome these barriers and achieve the scenario of 54 GW at 7-9 cents per kilowatt-hour by 2030, with an interim target of 10 GW at 13 cents per kilowatt-hour by 2020.
- In order to accomplish this goal, the OSWInD Initiative must achieve two critical objectives: reduce the cost of offshore wind energy and reduce the timeline for deploying offshore wind energy.
- Immediately upon its inception, the OSWInD Initiative will initiate or expand a suite of seven major activities, administered through three focus areas, targeted at these critical objectives.
- The three focus areas are Technology Development, Market Barrier Removal, and Advanced Technology Demonstration Projects.
- The seven major activities are innovative turbines; innovative balance of system; computational tools and test data; resource planning; siting and permitting; complementary infrastructure; and advanced technology demonstration projects.
- These seven activities will facilitate gigawatt-scale offshore wind deployment and will augment the nearly $100M allocated to offshore wind research and test facilities through the American Reinvestment and Recovery Act of 2009 (ARRA).
Table of Contents

Executive Summary ... ii

Table of Contents ... iii

List of Figures .. iv

List of Tables ... v

1. Introduction ... 1

2. Rationale for a National Offshore Wind Program .. 2

2.1 Resource Size ... 3

2.2 Benefits to Offshore Wind Deployment ... 4

3. Key Barriers to Offshore Wind Deployment .. 6

3.1 High Capital Costs and Cost of Energy ... 6

3.2 Technical and Infrastructure Challenges .. 7

3.3 Permitting Uncertainty .. 8

4. DOE Offshore Wind Program ... 8

4.1 OSWInD Strategy ... 9

 Technology Development .. 9

 Market Barrier Removal .. 10

 Advanced Technology Demonstration Projects .. 15

 Impact Analysis .. 15

 Current Offshore Wind Activities ... 16

4.2 OSWInD Implementation .. 17

 Focus Area 1: Technology Development ... 17

 Focus Area 2: Market Barrier Removal ... 26

 Focus Area 3: Advanced Technology Demonstration Projects ... 41
List of Figures
Figure 1. The OSWInD strategy drives toward scenarios through progress on critical objectives 1
Figure 2. The OSWInD Initiative broken down into Focus areas and Activities 2
Figure 3. EERE Analysis of Possible Future Electricity Supply Mix (DOE) .. 3
Figure 4. U.S. offshore wind speed estimates at 90-m height .. 4
Figure 5. Coastal versus inland state retail electric rates (DOE 2008) ... 5
Figure 6. Lifecycle Cost Breakdown - Offshore Wind (NREL) ... 7
Figure 7. Focus areas, Activities, and Research areas of the OSWInD Initiative 11
Figure 8. Major phases of the current OSWInD deployment timeline ... 13
Figure 9. Details and Research Areas for Activity 1.1 .. 17
Figure 10. Details and Research Areas for Activity 1.2 ... 19
Figure 11. Details and Research Areas for Activity 1.3 ... 20
Figure 12. Details and Research Areas for Activity 2.1 ... 26
Figure 13. Details and Research Areas for Activity 2.2 ... 30
Figure 14. Details and Research Areas for Activity 2.3 ... 32
Figure 15. Understanding External Conditions To Define the Design Parameters (DOE) 33
Figure 16. Research Area and Detail Timeline in Quarters and Years .. 40
List of Tables

Table 1. Activity 1.1: Methods and Verification ... 22

Table 2. Activity 1.1 (cont’d): Methods and Verification ... 23

Table 3. Activity 1.2: Innovative Turbines .. 24

Table 4. Activity 1.3: Innovative Balance of System .. 25

Table 5: Details of Activity 2.1 .. 35

Table 6: Details of Activity 2.1 (cont’d) ... 36

Table 7: Details of Activity 2.2 .. 37

Table 8: Details of Activity 2.2 (cont’d) ... 38

Table 9: Details of Activity 2.3 .. 39
1. Introduction
Offshore wind energy can help the nation reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and stimulate economic revitalization of key sectors of the economy. However, if the nation is to realize these benefits, key barriers to the development and deployment of offshore wind technology must be overcome, including the relatively high cost of energy, technical challenges surrounding installation and grid interconnection, and the untested permitting processes governing deployment in both federal and state waters.

In FY 2011, the United States Department of Energy (DOE) will initiate a formal Offshore Wind Innovation and Demonstration (OSWInd) Initiative to promote and accelerate responsible commercial offshore wind development in the U.S. Creating an Offshore Wind Industry in the United States: A Strategic Work Plan for the United States Department of Energy is an action document that will guide this new Initiative as it supports the development of a world-class offshore wind industry in the United States able to achieve 54 gigawatts of offshore wind deployment at a cost of 7-9 cents per kilowatt-hour by the year 2030, with an interim target of 10 gigawatts at 13 cents per kilowatt-hour by 2020.

To realize these scenarios, the OSWInd Initiative must achieve two critical objectives: reduce the cost of offshore wind energy and reduce the timeline for deploying offshore wind energy. As Figure 1 illustrates, the OSWInd Initiative has developed a strategy that drives towards these scenarios by making measurable gains against each of the critical objectives.

Figure 2. The OSWInd strategy drives toward scenarios through progress on critical objectives

In FY2011, the OSWInd Initiative will expand or initiate a suite of seven major activities, administered through three focus areas, targeted at these critical objectives (see Figure 3). The three focus areas are Technology Development, Market Barrier Removal, and Advanced Technology Demonstration Projects. The seven major activities are Innovative Turbines; Innovative Balance of System; Computational Tools and Test
Data; Resource Planning; Siting and Permitting; Complementary Infrastructure; and Advanced Technology Demonstration Projects. Taken together, this effort will facilitate gigawatt-scale offshore wind deployment and will augment the nearly $100M allocated to offshore wind research and test facilities through the American Reinvestment and Recovery Act of 2009 (ARRA).

Figure 4. The OSWinD Initiative broken down into Focus areas and Activities

Section 2 of this document discusses the rationale for a national offshore wind initiative. Section 3 lays out the key barriers to the creation of a world-class U.S. offshore wind industry. This discussion summarizes both technical and market barriers and lays out the assumptions and conclusions that influenced DOE’s decision-making regarding this Strategic Work Plan. Section 4 introduces the OSWinD Initiative in more detail and lays out its structure.

2. Rationale for a National Offshore Wind Program

Increasing the use of renewable energy for electricity generation is crucial to mitigating the risks of climate change and shifting the nation to a long-term low-carbon economy. As stated in the North American Leader’s Declaration of Climate Change and Clean Energy, the Obama Administration has set goals to reduce the nation’s carbon dioxide (CO₂) emissions by 50% by 2030 and 80% by 2050 (White House 2009).
Because offshore wind power generates electricity without emitting CO₂, gigawatt-scale offshore wind deployment could contribute significantly to a national climate change mitigation strategy.

DOE has conducted a portfolio benefits analysis to develop a high-level strategy for achieving the Administration’s ambitious goals for transforming the nation’s energy supply. EERE calculations of the potential future energy generation mixture in the United States have found that wind power could contribute both the fastest deployment and highest overall generation contribution of the renewable energy technologies (see Figure 5 below). An earlier scenario analyzed in the EERE report “20% Wind Energy by 2030” found that the United States could generate 20% of its electricity from wind energy by 2030, with offshore wind providing 54 GW of capacity (DOE 2008). These scenarios clearly show the potential for wind energy, and offshore wind in particular, to address the daunting challenge of reducing CO₂ emissions in a rapid and cost-effective manner.

2.1 Resource Size

The energy-generating potential of offshore wind is immense due to the lengthy U.S. coastline and the quality of the resource found there (offshore winds blow stronger and more uniformly than on land, resulting in greater potential generation). Offshore wind resource data for the Great Lakes, U.S. coastal waters, and Outer Continental Shelf up to 50 nautical miles from shore indicate that for annual average wind speeds above 8.0 m/s, the total gross resource of the United States is 2,957 GW or approximately three times the generating capacity of the current U.S. electric grid. Of this capacity, 457 GW is in water shallower than 30 m, 549 GW in water between 30 m and 60 m deep, and 1,951 GW in water deeper than 60 m (see Figure 7). The scale of this theoretical capacity implies that under reasonable economic scenarios, offshore wind can contribute to the nation’s energy mix to significant levels.
The vast majority of current offshore wind projects are in the European Union (EU), where utility-scale planning for offshore wind has at least a 10-year history. Shallow water technology is proven in Europe, with 39 projects constructed and more than 2,000 megawatts (MW) of capacity installed, although this market is heavily subsidized. The EU and the European Wind Energy Association (EWEA) have established aggressive targets to install 40 GW of offshore wind by 2020 and 150 GW by 2030.

2.2 Benefits to Offshore Wind Deployment

Each average GW of wind power capacity can generate 3.2 million megawatt-hours of electricity annually, avoids 1.8 million metric tons of carbon emissions and saves 1.2 million tons of coal or 20.9 billion cubic feet of natural gas, and 1.3 billion gallons of water.

Regionally high electricity costs in coastal regions, more energetic wind regimes offshore, and close proximity of offshore wind resources to major electricity demand centers could allow offshore wind to compete relatively quickly with fossil fuel-based electricity generation in many coastal areas. The 28 coastal and Great Lakes states in the Continental U.S. use 78% of the nation’s electricity (20% Report), and face higher retail electricity rates than their inland neighbors (Figure 9). Mid-Atlantic and Northeastern coastal states in particular face a dual problem in their high electricity costs and dependence on a high-carbon, price-volatile supply of fossil fuels for generation. In states lacking substantial onshore renewable resources, offshore wind deployment will be critical in meeting their renewable energy standards or goals. In states with high electricity rates, offshore wind energy may quickly become cost-competitive. Finally, the proximity of offshore wind resources to major load centers minimizes the need for new transmission.

Deployment of wind energy along U.S. coasts would also trigger direct and indirect economic benefits. According to NREL analysis, offshore wind would create approximately 20.7 direct jobs per annual
The 2007 national average wholesale electricity price, that is an average of spot market prices for day-ahead electricity delivery in the NERC regions with wholesale power markets, is 5.72 cents per kWh. However, prices spiked in 2008 and vary by region (New England spot prices averaged 9.00 cents per kWh in 2008). (EIA 2010)
megawatt in the United States. If 54 GW were installed in the U.S., more than 43,000 permanent operations and maintenance (O&M) jobs would be created, while more than 1.1 million job-years would be required to manufacture and install the turbines (NREL White Paper). Many of these jobs would be located in economically depressed ports and shipyards, which could be revitalized as fabrication and staging areas for the manufacture, installation, and maintenance of offshore wind turbines.

3. Key Barriers to Offshore Wind Deployment

The major barriers to deployment of offshore wind power in U.S. waters include the high costs of offshore wind facilities; the technical challenges and lack of current infrastructure to support the fabrication, installation, interconnection, and maintenance of these systems; and the untested permitting requirements for siting wind projects in federal and state waters.

3.1 High Capital Costs and Cost of Energy

Offshore wind installations have higher capital costs than land-based installations per unit of generating capacity, largely because of turbine upgrades required for operation at sea and increased costs related to turbine foundations, balance-of-plant infrastructure, interconnection, and installation. In addition, one-time costs are incurred with the development of the infrastructure to support the offshore industry, such as vessels for installation, ports and harbor upgrades, manufacturing facilities, and workforce training programs. NREL reports estimate a current baseline installed capital costs for offshore wind of $4,250/kW based on energy market surveys (NREL White Paper). Several important offshore technology issues require research and development in order to achieve competitive market pricing in the long term; these issues include reducing installed capital costs, improving reliability, and increasing energy capture. In the longer term, innovative, comparatively inexpensive foundation designs will be required in order to harness the massive wind resource located in waters deeper than 60 meters.

In addition to elevated capital costs, offshore wind energy currently has higher cost of energy (COE) than comparable technologies. As discussed throughout this Strategic Work Plan, a critical objective of the OSWInD Initiative is to lower the offshore wind COE. Since COE is calculated as a unit of currency per unit of energy (typically $/MWh or ¢/kWh), lowering project costs of a project only attacks COE by lowering the numerator. In order to have a game-changing impact on COE, on the order of cutting current COE projections by over 50%, the OSWInD Initiative will work with all necessary parties to drastically increase the denominator, or
the energy generated by a single unit, in addition to lowering in the numerator. Higher energy generation will result from larger, more efficient, more reliable turbines with access to the best wind resource possible.

Achieving Cost of Energy reduction goals will require substantial improvement in all components of offshore wind project development, capital expenditures, and operational processes (Figure 11).

- **Turbine Capital Cost**: reduction in capital and installation costs of all turbine components
- **Balance of Station Capital Cost**: reduction in capital and installation costs of foundation structures, cabling, substations and other non-turbine components
- **Operations, Maintenance and Replacement Cost**: reductions in scheduled maintenance as well as improved reliability through lower replacement costs for components, such as gearboxes, generators and blades.
- **Capacity Factor**: improved overall system performance including siting, energy capture and availability
- **Transmission & Grid Integration Cost**: including low cost transmission configurations and wind integration into power management systems
- **Start-up & Permitting Cost**: including reducing cost of delays due to permit approval times
- **Cost of Capital**: including reduced financial risks, lower insurance & warranty premiums via stable & predictable production output and life cycle operational time.

![Figure 12. Lifecycle Cost Breakdown - Offshore Wind (NREL)](image)

3.2 Technical and Infrastructure Challenges

Significant challenges to offshore wind power deployment related to resource characterization, grid interconnection and operation, and infrastructure will need to be overcome. The offshore wind resource is not well-characterized; this significantly increases uncertainty related to potential project power production and turbine and array design considerations, which in turn increase financing costs. The implications for adding large amounts of offshore wind generation to the power system need to be better understood in order to ensure reliable integration and evaluate the need for additional grid infrastructure such as an offshore transmission backbone. Finally, with current technology, cost-effective installation of offshore wind turbines requires specialized turbine installation vessels, purpose-built portside infrastructure for installation, operations, and maintenance, and robust undersea electricity transmission lines and grid
interconnections. These vessels and this infrastructure do not currently exist in the U.S., and legislation such as the Jones Act limits the ability of foreign-flagged vessels of this kind to operate in U.S. waters.

3.3 Permitting Uncertainty

Offshore wind projects face uncertain permitting processes that substantially increase the financial risk faced by potential project developers and financiers and that discourage investment both in projects and in development of supply chain and other supporting infrastructure. Current estimates for project approvals on the Outer Continental Shelf (OCS) range from 7 to 10 years. In the Great Lakes, in which eight states and two Canadian provinces claim jurisdiction, numerous competing activities and the lack of an overarching regulatory framework create additional and unique permitting challenges.

Numerous state and federal entities have authority over siting, permitting, and installation of offshore wind facilities; each contributes to the complexity and length of the process. Federal agencies and departments with jurisdiction to regulate and approve offshore wind projects and related infrastructure include the Department of the Interior, which through the Bureau of Ocean Energy Management, Regulation and Enforcement (BOEM) serves as the lead agency in permitting offshore wind energy on the OCS; the Army Corps of Engineers (ACOE), which is responsible for permitting any potential obstruction or alteration of U.S. navigable waters, and currently serves as the lead federal agency in permitting offshore wind in state waters, including the Great Lakes; and a host of other federal entities, such as the Environmental Protection Agency (EPA), Fish and Wildlife Service (FWS), National Park Service (NPS), National Oceanic Atmospheric Administration (NOAA), National Marine Fisheries Service (NMFS), Federal Aviation Administration (FAA), Department of Defense (DOD), U.S. Coast Guard (USCG), and the Federal Energy Regulatory Commission (FERC). An equal or greater number of state and local government entities as well as numerous other stakeholders must also be consulted in the permitting process.

4. DOE Offshore Wind Program

DOE, as a non-regulatory agency, is in a unique position to provide national leadership through collaborative barrier-breaking partnerships with other federal agencies, the States, academia, and industry. This section of the Strategic Work Plan lays out a detailed program for accelerating offshore wind deployment in the U.S. through targeted technical research and development, partnerships to remove market barriers, and implementation of pioneering demonstration projects. Through such a program, DOE
can capitalize on its unique position to help eliminate uncertainty, mitigate risks, and facilitate the use of the first projects as testbeds for research and development.

4.1 OSWiND Strategy

As discussed in Section 2 above, a common set of challenges and barriers confront the initial U.S. deployment of offshore wind energy and the long term growth of offshore wind into a major industry and significant contributor to the nation’s energy needs. The OSWiND strategy considers two critical objectives in attacking these barriers.

Offshore Wind Critical Objectives

- **Reduce the cost of energy** through technology development to ensure competitiveness with other electrical generation sources;
- **Reduce deployment timelines** and uncertainties limiting U.S. offshore wind project development.

To meet these objectives, the OSWiND Initiative will undertake a set of seven major Activities administered through three Focus Areas. The activities will be further broken down into Research Areas, Details and Stages. See Figure 7 for a representation of the Program to the Research Area level and section 4.2 for an in-depth discussion of the remaining levels. A strategic discussion of the three Focus Areas concludes section 4.1.

Technology Development

Currently, more than 2 GW of offshore wind capacity is installed in Europe and about 5 GW of offshore wind is proposed for the U.S. (NREL WP), indicating that a certain level of technological readiness already exists, although significant government subsidy will be required to make initial projects economically competitive. A world-class research and development program is needed to integrate the resources and expertise of the country through coordinated investment and information exchange in order to propel the U.S. to the leading edge of offshore wind technology. In the short-term, the Technology Development Focus Area will concentrate primarily on risk reduction to facilitate the initial deployment of offshore wind projects in U.S. waters. Over the long term, the Technology Development Focus Area will have a primary goal of developing new technologies that lower the cost of energy, sustain the growth of the industry, and make offshore wind cost-competitive without subsidies.

Facilitating deployment of the initial projects in the U.S. is a top priority in the short-term because these installations will provide experience, generate performance data, and highlight unforeseen issues, all of which will help inform and prioritize the OSWiND Initiative’s longer-term technology research and development program. Design codes, standards development, and performance models are some of the specific Technology Development activities that will both lay the foundation of a long-term research and development program and reduce risk for developers, regulators, designers, and financiers involved in the first offshore wind installations. Special consideration to technical improvements needed to adapt primarily European technologies to the U.S. offshore environment will also be a priority.
OSWInD’s long-term research and development strategy will focus primarily on hardware development to both reduce the life-cycle costs of offshore wind energy systems and expand access to the most promising wind resource areas. More than half of the estimated life-cycle cost of an offshore wind turbine farm is determined by the foundation, electrical infrastructure, installation and logistics, and operations and maintenance costs.

Successful implementation of this ambitious national research and development program will require collaboration with federal and state agencies, universities, international organizations, non-governmental organizations, and complementary industries such as the U.S. offshore oil and gas and European offshore wind industries. Identifying shared priorities in research will be critical to maximizing investment with minimal overlap. Access to shared resources, especially test facilities, will be integral to developing the next generation large offshore wind turbines. As a final step, field testing could be conducted offshore to provide platforms for testing pre-commercial turbines before full deployment and to collect performance data to benefit the entire industry and lead to improved reliability. The specific activities and detailed research areas that form the Technology Development focus area will be presented in the OSWInD Initiative Implementation section.

Market Barrier Removal
Long-term gigawatt deployment of offshore wind energy in the United States cannot exist within the current landscape in which the regulatory process is still uncertain and the estimated timeline from initial bidding to project approval ranges from 7-10 years (Figure 13). Moreover, key market, social and environmental risks are not well-understood; offshore wind resources are poorly characterized; and essential transmission, supply chain, installation and maintenance infrastructure does not yet exist. Absent a clear vision to overcome these recognized stumbling blocks, project development risks will continue to be unmanageable and COE will increase.
Figure 14. Focus areas, Activities, and Research areas of the OSWInD Initiative
Reducing Cost of Energy: An Analysis of Interrelated Factors

Table 10 provides a long term scenario for achieving a $.07- $.09/kW Cost of Energy for offshore wind by 2030 through addressing the full range of critical interrelated factors outline below.

I. **Increased system efficiency and decreased capital costs** via (a) development of larger scaled systems and (b) innovative component and overall system designs:
 - Installed Capital Cost will need to be reduced by 39% to $2,600./kW from $4,259./kW
 - Average Turbine rating will need to increase from 3.6 MW to 10.0 MW
 - Capacity Factor will need to improve from 39% to 45%.

II. **Decreased operational and replacement costs:**
 - Operating costs in a difficult marine environment must be continually reduced to compete with land-based systems
 - Fully loaded replacement cost, including the cost of marine transport and component replacement costs will need to be reduced via higher reliability and innovative, low maintenance designs.

<table>
<thead>
<tr>
<th>Year</th>
<th>2010</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installed Cap Cost/kW</td>
<td>$ 4,259</td>
<td>$ 3,900</td>
<td>$ 3,400</td>
<td>$ 2,900</td>
<td>$ 2,600</td>
</tr>
<tr>
<td>Fixed Charge Rate</td>
<td>20%</td>
<td>17%</td>
<td>14%</td>
<td>11%</td>
<td>8%</td>
</tr>
<tr>
<td>Turbine Rating (MW)</td>
<td>3.6</td>
<td>5.0</td>
<td>6.0</td>
<td>8.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Rotor Diameter</td>
<td>107</td>
<td>126</td>
<td>136</td>
<td>156</td>
<td>175</td>
</tr>
<tr>
<td>Annual Energy Production / turbine</td>
<td>12276</td>
<td>17905</td>
<td>22029</td>
<td>31040</td>
<td>39381</td>
</tr>
<tr>
<td>Capacity Factor</td>
<td>38.93</td>
<td>40.88</td>
<td>43.67</td>
<td>44.29</td>
<td>44.96</td>
</tr>
<tr>
<td>Array Losses</td>
<td>10%</td>
<td>9%</td>
<td>8%</td>
<td>7%</td>
<td>7%</td>
</tr>
<tr>
<td>Availability</td>
<td>95%</td>
<td>96%</td>
<td>97%</td>
<td>97%</td>
<td>97%</td>
</tr>
<tr>
<td>Rotor Cp</td>
<td>0.45</td>
<td>0.46</td>
<td>0.47</td>
<td>0.49</td>
<td>0.49</td>
</tr>
<tr>
<td>Drivetrain Efficiency</td>
<td>0.9</td>
<td>0.9</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>Rated Windspeed (m/s)</td>
<td>12.03</td>
<td>12.03</td>
<td>12.03</td>
<td>12.03</td>
<td>12.03</td>
</tr>
<tr>
<td>Average Wind Speed at Hub Heights</td>
<td>8.8</td>
<td>8.91</td>
<td>8.96</td>
<td>9.09</td>
<td>9.17</td>
</tr>
<tr>
<td>Wind Shear</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Hub Height (m)</td>
<td>80</td>
<td>90</td>
<td>95</td>
<td>110</td>
<td>120</td>
</tr>
<tr>
<td>Generator</td>
<td>Geared</td>
<td>Geared</td>
<td>DDPM</td>
<td>DDSC</td>
<td>DDSC</td>
</tr>
<tr>
<td>Cost of Energy ($/kWh)</td>
<td>0.269</td>
<td>0.2057</td>
<td>0.1486</td>
<td>0.1035</td>
<td>0.0712</td>
</tr>
</tbody>
</table>

DDPM: direct-drive permanent magnet; DDSC: direct-drive superconducting.

III. **Decreased financing costs via reduced project risks:**
 - Fixed Charge financing rate will need to be reduced from current estimated 20% to target level of 8% via decrease in perceived investor risk. Fixed charge rate includes financing fees, cost of capital/return on equity, fees during construction, insurance and warranty fees.
 - Regulatory and permitting approvals will need to be predictable and timely
 - Installation construction costs, system performance and maintenance and replacement requirements will need to be stable and predictable.
The OSWinD Initiative will provide this clear vision for overcoming market barriers through three primary Activities:

- **Resource Planning**, which will address wind resource characterization and other data required for Coastal and Marine Spatial Planning and other efforts to plan the use of marine resources;
- **Siting and Permitting**, which will address policy and economic analysis, radar interference, regulatory processes, environmental and socioeconomic barriers, public acceptance, interagency dialogue concerns and risk management;
- **Complementary Infrastructure**, which will address domestic manufacturing and supply chain development, transmission and interconnection planning, and specialized vessels and other installation, operations and maintenance technology.

Figure 15. Major phases of the current OSWinD deployment timeline.
Close collaboration among key federal and state agencies as well as other stakeholders will be a cornerstone of the Program’s strategy in this area. Responsibility for the barriers facing offshore wind is widely distributed among federal and state agencies, as well as a wide range of stakeholders.

Considering the scale and geographic distribution proposed for offshore wind energy, very little site-specific data exists on external conditions that influence design requirements, energy production and therefore economic viability. The Program will facilitate collaboration between key agencies and research organizations to establish a national data network for characterizing the wind resource and other factors such as wave action and seabed mechanics. These factors are not well documented but must be better known for accurate marine spatial planning, establishment of prioritized offshore wind zones, and financial due diligence.

Though DOE has no legal authority to mandate the removal of many of the hurdles barring accelerated gigawatt-scale deployment of offshore wind, the agency is uniquely placed to play a catalytic role in addressing such barriers by bringing depth of knowledge of the technology and the industry, technical and financial resources. The Program will thus aggressively engage federal and state regulators, resource management agencies, and outside stakeholders to drive collective action toward the creation of an offshore wind industry, through the establishment of formal working arrangements such as memoranda of understanding with key agencies—for example, the Memorandum of Understanding between DOE and the DOI on the future development of commercial offshore renewable energy projects on the U.S. Outer Continental Shelf. Under the Action Plan developed pursuant to the MOU, the DOE Wind Program and DOI’s Bureau of Ocean Energy Management and Regulatory Enforcement have committed to improved exchange of data on offshore wind resources and technologies, engage stakeholders on critical barriers, and collaborate on research projects to achieve objectives in 5 initiatives, including:

- Developing attainable deployment goals for offshore wind on the OCS
- Reducing siting and permitting timelines for project developers
- Improving resource assessment capabilities
- Developing technical standards for the U.S. offshore wind industry
- Reducing public acceptance risk through information exchange and public engagement

Successful implementation of the MOU and the Action Plan will be critical to reducing the deployment barriers identified in this Plan.

Safety, domestic economic benefits, cost-effective installation and operations, and practical grid integration processes are dependent upon development of large-scale local, regional and national infrastructure components dedicated to meeting the requirements of the offshore industry. The Program plans research activities with states, federal agencies and industry to develop optimized, integrated strategies for meeting these needs and funding technical development.
Advanced Technology Demonstration Projects

The OSW Program will undertake Advanced Technology Demonstration Projects to impact the speed and scale of offshore wind development. Through these demonstration partnerships, DOE will support specific research, engineering and planning activities related to deployment of ground-breaking commercial or research-based offshore wind energy projects. On a cost-share basis, DOE will invest in specific aspects of project development that reduce siting and planning barriers or risks; reduce balance-of-plant infrastructure costs; enable full-scale testing of components, turbines and arrays; and/or support initial deployment of innovative technology. By providing funding, technical assistance and government coordination to accelerate deployment of demonstration projects, DOE can help eliminate uncertainty, mitigate risks, and facilitate the use of the first commercial projects as testbeds for R&D.

Key elements of the Demonstration Project focus area include:

- Multiple partnerships in a well-publicized 5-year program awarded through competitive solicitation
- Groundbreaking offshore projects of diverse geographic locations & technical focus areas
- Partnerships with commercial developers, industry, university research consortia, and utilities
- Program structure that grows and adapts with industry circumstances and successes
- Parallel DOE program to utilize BOEM research leases for later-stage projects
- Phased ‘stage-gate’ process – projects must qualify for next phase
- Phase 1 activities that focus on factors enabling deployment; facility engineering; test readiness.
- Phase 2 activities that include installation and operational testing

Selection criteria for the Demonstration Project include:

- 3-5 projects, minimum 50% cost share
- Prior progress toward deployment particularly in permitting
- Demonstrated technical expertise
- How funds would accelerate realization of project goals
- How project success would advance industry knowledge base
- How awardees and partners would support research

Impact Analysis

The OSWInD Initiative carries out cost and benefits analysis to provide a context for decision-making and to help define ongoing program activities and metrics. Development of analysis based (COE and other) metrics are critical for reporting progress and judging technical feasibility of new technology. These analysis activities include a coherent metric system to track program impact, cost of deployment barriers analysis to characterize program performance, and support for the development of analysis tools to assist the program in prioritizing major program research and deployment elements.

The cost modeling examines micro-economic cost and supply (e.g. O&M, installation, turbine subcomponents, etc.), but also considers macro effects (e.g. commodity prices, exchange rates, policy, etc.). These activities require substantive knowledge and evaluation tools, some of which remain to be developed. The analysis areas include national energy penetration modeling such as ReEDs, NEMS, and Markel. These efforts support national-scale initiatives to quantify carbon reductions, and enhance high penetration renewable scenario modeling. They also integrate offshore wind projections with ongoing job models such as JEDI that are already underway and include market and policy analysis on offshore wind projects, both in the US and Europe, as appropriate.
OSWInD will develop and track metrics for its activities in each of the Focus Areas listed above to inform decision making regarding support for technology development and to assess the long range industry impact of DOE investment.

Current Offshore Wind Activities

There are several offshore wind activities in which DOE is currently engaged. These activities are summarized here, but discussed in more detail in Appendix B.

DOE has invested a total of $99.5M through the American Reinvestment and Recovery Act of 2009 (Recovery Act), FY09 appropriations, and FY10 appropriations into offshore-related activities within the wind program. The current offshore wind activities support all three focus areas of the OSWInD Initiative: technology development, market barrier removal, and advanced technology demonstration projects.

Activities in support of the technology development focus include: 1) the large drivetrain testing facility at Clemson University, 2) the large blade test facility at Massachusetts Clean Energy Center, and 3) research conducted at the University of Maine, the University of Delaware, and the University of Toledo. The large drivetrain and large blade test centers provide national infrastructure for full scale tests of key turbine components. The facilities will enable testing of a 15MW drive trains and blades up to 70m in length. These facilities are important national investments as currently, there are not any facilities in the U.S. where testing of the large drivetrains and blades predicted for offshore wind technology deployments can occur. University research will result in the validation of coupled aeroelastic/hydrodynamic models for floating wind turbine platform deployments; modeling work on two-bladed, downwind floating turbine concepts; feedback to technology developers on corrosion protection; feedback to developers on gearbox reliability; and materials innovation using composites for tower and blade structures.

Market barrier removal activities include: 1) Environmental research at the University of Maine, Michigan State University; 2) Projects addressing marketplace acceptance at the University of Delaware, Sustainable Energy Advantage LLC, Great Lakes Commission, Princeton Energy Resources International, LLC, and the South Carolina Energy Office; and 3) workforce development work at the University of Massachusetts, University of Maine, University of Toledo, and University of Delaware. The environmental research will investigate avian, bat and marine animal interactions for both the great lakes and the Atlantic seaboard. The market acceptance research will investigate solutions to current barriers for offshore wind deployment. The workforce development activities will result in new offshore wind specific curriculum at the community college, university undergraduate, and university graduate levels.

The current activity which supports the advanced technology demonstration project focus is the deployment of a floating platform/turbine into the Gulf of Maine. The Recovery Act enabled DOE to fund the University of Maine to deploy a 100kw wind turbine into deep water in the Gulf of Maine. The University of Maine will deploy a turbine/foundation design down-selected from three floating platform concepts tested in a wave tank testing facility. The turbine will be instrumented to gather empirical data which will be used to validate current aero-elastic/hydrodynamic models.

In addition to the activities mentioned above, the Department maintains a core competency of technical experts, distinguished in their field, at the DOE National laboratory complex to support key activities essential to the national agenda. Finally, the Department is actively engaged in interagency collaborations.
through activities with the MMS MOU Action Plan and the National Ocean Council, and other teams attempting to address the myriad of regulatory and permitting issues.

4.2 OSWInD Implementation

This section takes a detailed look at how each of the Focus areas, Activities, and Research areas will be implemented as the Program matures. At the end of each Focus area discussion, it includes a chart that shows Details and Stages for each Research area.

Focus Area 1: Technology Development

The research efforts in focus area 1 will be targeted at overcoming technological barriers to achieving a robust offshore wind industry able to achieve the deployment goal of 54 GW of offshore wind by 2030. The specific activities will focus on improvements to models, design tools, components, turbines and the balance of plant that will lead to a lower cost of energy, reduction in technological risk, and increased access to wind resources. The activities are highly integrated such that results of one area used as inputs to another area and ultimately guided by a system-level optimization methodology. The Technology Development Focus area is broadly categorized into three main activities; (1.1) Computational Tools and Test Data, (1.2) Innovative Turbines, and (1.3) Innovative Balance of System.

Activity 1.1: Computational Tools and Test Data: The development of innovative technology begins with computational tools which are verified through field tests. Collecting data on current turbine performance and reliability along with environmental design conditions such as metocean data and extreme weather events enables updating and improving the design tools that allow new turbines, components and control systems to be developed as well as refinement of economic analysis based on turbine performance models. Current offshore technology is largely derived from land-based designs that have been conservatively modified for offshore use. The development of new design tools, standards and testing methods will lay the foundation for safer, more reliable, cost-effective, and higher performing offshore wind turbines. Financial and regulatory risks are also reduced through the development of validated standards and performance tools which increase confidence in the long term performance of offshore wind installations.
Research Area 1.1.1: Performance Modeling and Validation: In assessing the economic feasibility of a project, developers and financiers rely on models that predict the amount of energy a wind project will produce over its lifetime. Therefore, it is crucial to accurate project planning and credibility with the financial community that offshore energy production models be developed and validated by existing projects.

Development of a computational model that reliably predicts individual wind turbine performance in large offshore arrays is needed. Once this model is created, it must be validated using field test data. This capability will allow more reliable power production predictions, thus reducing project performance risk and cost of capital.

The performance of optimized offshore turbine designs may take advantage of innovations and design opportunities that were previously rejected for land-based turbines. The optimized system may include turbines that cost more per megawatt if it is balanced against reduced life-cycle project costs for the offshore system as a whole. Methodologies and computational tools will have to be developed that evaluate proposed improvements to subsystems and measure the impact on the overall system in terms of cost of energy and other relevant metrics.

Research Area 1.1.2: Design Tools and Standards: Offshore wind turbines employ technologies and designs that significantly depart from existing land-based turbine technology. The development of new and accurate computer models is necessary to aid in the development of optimum offshore designs. DOE will support development of computational tools needed to address structural design, control systems, aerodynamics, energy production, certification verification issues, multiple turbine array effects, multiple array impacts on a regional basis, resource characterization and meteorological/oceanographic phenomena. These tools will address the unique extreme environments in the US including hurricanes and ice conditions to allow deployment in all regions of the U.S.

Advanced design tools allow the reliable prediction of the behavior of complex ocean environment conditions and this new capability will permit the rigorous assessment and development of these innovative turbine concepts, components, and foundations. In the longer term, these advanced design tools will be necessary to develop and evaluate the floating platform designs necessary to reach deepwater resource locations especially off the Coast of Maine and the West Coast.

A robust set of standards must be developed for the benefit of designers, developers, regulatory agencies and the industry at large to reduce risk and increase reliability. Partnerships with International and national standards-writing entities will result in access to existing guidelines and standards which can serve as a baseline for US national efforts. It is essential that US standards harmonize with International standards to ensure access to global markets. These standards will lead to increased reliability, lowered risk, and lower cost of capital.

Research Area 1.1.3: Field Testing: The most effective way to establish offshore design requirements and confirm performance is through measurements made on actual wind turbines at sea. It will be necessary to instrument and measure multiple turbines to capture regional and technology design differences. DOE and national labs will partner with university research centers and industry in planning a long-term national operational data program.
Field test data from multiple diverse test sites is essential for computer model validation and to support innovation. This field test data should include grid interconnection and research instrumentation. Additionally, it is important to collaborate with industry to establish a national or international database of shared operating experience which can lead to industry-wide understanding of the failures and costs of existing designs to direct and inform future research and development towards the highest impact activities.

Activity 1.2: Innovative Turbines: In order to lower overall project cost of energy, innovative integrated turbine configurations (rotor, drivetrain, tower, controls) are needed to reduce system weight relative to rated capacity, simplify installation processes, drastically reduce maintenance requirements by improving reliability, increase energy capture and, in general, benefit from economies of scale. DOE will form partnerships with research consortia, including industry, to identify, model and eventually demonstrate candidate system configurations with high impact potential on the cost of energy.

Research Area 1.2.1: New Turbine Concepts: It is generally recognized that larger turbines are needed to overcome the added cost of the foundation and other capital costs associated with offshore wind turbines. A concept study of a large, efficient and cost-effective turbine system will highlight the research and development areas that will be required to realize a system of that size. This will help direct research and development of advanced components, especially rotors, which will be required to achieve the turbine design requirements. Concepts that achieve major weight reduction will also help enable future floating foundation designs.

Research Area 1.2.2: Advanced Drive Concepts: Innovative turbine drivetrains that have the potential for lower cost of energy, improve reliability, reduce weight and increase energy capture must be developed to enable the cost-effective, next generation turbines. DOE will support pre-prototype studies modeling integration of superconducting generators, transverse flux topologies and other enabling technologies into advanced turbine drivetrains. The drivetrain test facilities and eventually an offshore test bed will lower the risk for industry to develop these next generation drive concepts.
Research Area 1.2.3: Controls and Power Electronics: Due to their increased size and cost, offshore turbines offer new possibilities in control and power electronic sophistication not economically feasible in smaller systems. R&D leading to advances in condition monitoring systems, control algorithms, blade control strategies and power conditioning can increase turbine energy production, capacity factor and component lifetime.

A condition-based monitoring system consisting of a comprehensive suite of sensors and robust algorithms that detect impending problems before they occur, would improve availability and reliability with lower operating costs and improved energy capture which is especially valuable for the relatively remote, and limited accessibility of offshore turbines. This comprehensive suite of sensors and robust algorithms can also be combined into control systems that increase hurricane survivability, reduce operational loads, and provide sufficient damping for floating platforms.

Activity 1.3: Innovative Balance of System: A DOE-sponsored design effort for U.S.-engineered support structures, anchors, and moorings will lead to identification of significant cost-saving opportunities for wind power plants in both shallow water, and in deeper water with both fixed-bottom and floating substrutures. Engineering trade-off analyses will be followed by detailed design studies and prototype testing. Meanwhile, the development of grid architecture and hardware will integrate with innovative foundations and turbine concepts into a system-level optimization methodology to produce an optimized offshore next-generation wind turbine technology platform. Such efforts would draw upon the knowledge and expertise of the nation’s marine engineering industry.

Research Area 1.3.1: Support Structure: Innovative shallow, transitional, and deepwater substructure designs that lower capital and installation costs and expand access to available wind resources will be developed. Advanced computational design tools for rigorously analyzing and reliably predicting the behavior of these complex subsurface structures will dramatically decrease the technology adoption timeline and enable focused and cost effective technology development through design trade-off studies leading to eventual prototype hardware demonstrations. Additionally, innovative anchors and mooring technology for these advanced substructure designs will further reduce cost and risk. Advanced control systems will help reduce loads on foundations and enable the development of floating systems which will
require stability control and load minimization. Foundation designs will have to be done in tandem with installation strategies to optimize the time, cost and complexity of the construction phase which is susceptible to weather, availability of specialized equipment and variability of seabed conditions.

Research Area 1.3.2: Balance of System: The design of the wind turbine array grid including inter-turbine connection schemes and substation designs as well as longer connections to the main electrical grid will all need to be optimized in order to make offshore wind developments economical. Design studies for high-voltage direct current, superconducting and other technologies will be undertaken to evaluate the available options. Concepts and hardware that allow for load balancing, short term forecasting of wind farm production and other grid services will also help make offshore wind more economical and integrate better with the existing electrical grid infrastructure. Reliability of the substations is also of vital importance especially as farms grow in size and more distant from shore.
Table 1. Activity 1.1: Methods and Verification

<table>
<thead>
<tr>
<th>Research Area</th>
<th>Title</th>
<th>Detail</th>
<th>Deliverable</th>
<th>Impact</th>
<th>Timeline</th>
<th>Partners</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1</td>
<td>Performance Modeling and Validation</td>
<td>1. Develop wind turbine & array performance models</td>
<td>Computational models that reliably predict individual turbine and array performance in large offshore farms</td>
<td>Reliable power production predictions reduce project performance risk, lower cost of capital and increase energy capture</td>
<td>Update existing model to beta version incorporating offshore conditions - 1 year</td>
<td>Labs, Academia, NOAA, NCAR, Onshore</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Validate performance models with field test data</td>
<td>Validation of above model with field test data</td>
<td>Reliable power production predictions reduce project performance risk, lower cost of capital and increase energy capture</td>
<td>2 years – post installation of turbine.</td>
<td>Labs, wind array operators,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Develop methodologies and computational tools to optimize next generation offshore wind turbines, arrays, O&M strategies, etc at a system-level</td>
<td>Concepts, methods and computational tools to assess impacts of proposed subsystem improvements</td>
<td>Enables optimized designs which ultimately lead to lowest cost of energy</td>
<td>System-level model development - 2 years</td>
<td>Labs, Academia, Industry</td>
</tr>
<tr>
<td>1.1.2</td>
<td>Design Tools and Standards</td>
<td>1. Partner with European labs to access existing databases</td>
<td>Existing research and operational data from European offshore wind installations</td>
<td>Test data from European installations provides baseline for design tool development</td>
<td>Establish and support Partnerships - 1 year Access Data - Ongoing</td>
<td>Labs, European Labs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Develop standards for offshore wind. Harmonize with European standards</td>
<td>Robust suite of design and operation standards for U.S. Offshore Wind Industry</td>
<td>Standards lead to increased reliability, lowered cost, and lower cost of capital</td>
<td>Draft guidelines – 1 year Gap-filling studies – 2 years</td>
<td>Labs, BOEM, Offshore wind industry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Coupled Dynamic Computational Model Development</td>
<td>Validated model to evaluate dynamic response on the coupled wind turbine and support structure to wind and wave loading</td>
<td>Allows development of floating platforms and optimization of full turbine systems</td>
<td>2 years – validated code with field test data</td>
<td>Labs, Academia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Develop and validate loads models for extreme environments (hurricanes, ice, etc.)</td>
<td>Validated model that accurately predicts wind turbine loads under extreme environmental conditions</td>
<td>Essential capability to enable deployment in Southeast and Great Lakes and inform standards development</td>
<td>Study on hurricane design loads – 6 months Validation on scale models – 1 year</td>
<td>Labs, Academia, ABS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Advanced design tools for complex subsurface structures</td>
<td>Computational Model that reliably predicts behavior of complex subsurface structures</td>
<td>New capability permits rigorous assessment of innovative structures</td>
<td>2 years after studies on metocean conditions completed</td>
<td>Labs, Academia</td>
</tr>
</tbody>
</table>
Table 2. Activity 1.1 (cont’d): Methods and Verification

Activity 1.1: Technology Development – Computational Tools and Test Data

<table>
<thead>
<tr>
<th>Research Area</th>
<th>Title</th>
<th>Detail</th>
<th>Deliverable</th>
<th>Impact</th>
<th>Timeline</th>
<th>Partners</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.3</td>
<td>Field Testing</td>
<td>1</td>
<td>Implement data gathering campaign and gather test data from multiple field test sites (fixed, floating, regional)</td>
<td>Field test data from diverse sites</td>
<td>Field testing is essential for model validation and to support innovation and technological risk reduction</td>
<td>Instrument - 1 year Data Collection – Ongoing Analysis – 1 year</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Provide grid interconnection and research instrumentation for field test sites</td>
<td>Field test equipment operational at sites identified in above task</td>
<td>Field testing is essential for model validation and to support innovation and technological risk reduction</td>
<td>5 yrs</td>
</tr>
</tbody>
</table>
Activity 1.2: Technology Development - Innovative Turbines

<table>
<thead>
<tr>
<th>Research Area</th>
<th>Title</th>
<th>Detail</th>
<th>Deliverable</th>
<th>Impact</th>
<th>Timeline</th>
<th>Partners</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.1</td>
<td>New Turbine Concepts</td>
<td>1. Large, Cost Effective Turbine Concept Studies</td>
<td>Turbine concepts with full cost analysis, demonstrated engineering feasibility, and tradeoffs for hardware development.</td>
<td>Larger machines are needed to lower balance of station costs that dominate offshore project economics</td>
<td>5 years</td>
<td>Labs, Inventors, Industry, academia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Advanced Rotor Development</td>
<td>New materials, manufacturing methods and design concepts to enable next generation rotor development</td>
<td>Innovations in materials, manufacturing and design lead to load and weight reduction enabling higher energy capture and larger machines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2.2</td>
<td>Advanced drive concepts</td>
<td>1. Evaluate and develop innovative turbine drivetrains with potential for lower cost of energy</td>
<td>Innovative turbine drivetrains demonstrated to improve reliability, lower cost, reduce weight, and increase energy capture</td>
<td>Innovations in the market that increase reliability, lower costs, and increase energy capture</td>
<td></td>
<td>Labs, Inventors, Industry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Develop Reliability Framework and O&M Priorities</td>
<td>Ongoing reliability characterization and analysis reporting</td>
<td>Database that gathers/provides information targeted at improving reliability and asset management</td>
<td>Instrumentation – 6 months Data collection and analysis – 4 years</td>
<td>NL, Industry, Industry, ...</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Controls and Power Electronics</td>
<td>1. Evaluate and develop condition based monitoring systems for offshore systems</td>
<td>A comprehensive suite of sensors and robust algorithms that detect impending problems before they occur</td>
<td>Improved availability and reliability with lower operating costs and improved energy capture</td>
<td>2 yrs</td>
<td>Labs, Academia, industry, Onshore</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Evaluate and develop advanced control systems for offshore wind turbines</td>
<td>Control systems that increase hurricane survivability, reduce operational loads, and provide sufficient damping for floating platforms</td>
<td>Increase survivability, increased energy capture, and enables floating platforms</td>
<td>2 yrs after computational tools are available</td>
<td>Labs, Academia, Industry</td>
</tr>
</tbody>
</table>

Table 3. Activity 1.2: Innovative Turbines
Activity 1.3: Technology Development - Innovative Balance of System

<table>
<thead>
<tr>
<th>Research Area</th>
<th>Title</th>
<th>Detail</th>
<th>Deliverable</th>
<th>Impact</th>
<th>Timeline</th>
<th>Partners</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3.1</td>
<td>Support Structures</td>
<td>1. Evaluate and Develop low cost offshore support structures for a variety of water depths and offshore conditions including floating platforms.</td>
<td>Innovative shallow, transitional and deepwater support structure designs that lower capital and installation costs</td>
<td>Demonstrated and validated innovative support structures that lower cost and expand access to resources</td>
<td>Scale Model design & testing – 2 years, Full scale Prototype – 2 years</td>
<td>Labs, Oil and Gas industry, Developers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Evaluate and develop innovative anchors and moorings for floating offshore systems in coordination with water program to reduce cost and risk</td>
<td>Innovative anchor and mooring designs for floating offshore systems that lower cost and risk</td>
<td>Lower cost of energy, increased reliability, and improved investor confidence</td>
<td>Mooring concepts and testing – 2 years, Platform integration – 1 year</td>
<td>Labs, Oil and Gas Industry, Coast Guard</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Balance of System</td>
<td>1. Offshore Grid Hardware and Integration Studies</td>
<td>Grid architecture and hardware design concepts</td>
<td>Improved array efficiency, feed in to system level optimization</td>
<td>Concept studies and evaluation – 3 years</td>
<td>Labs, Submarine cable industry, consultants</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Evaluate and develop grid hardware</td>
<td>New hardware solutions developed based on above designs</td>
<td>Enables larger and more efficient and reliable electrical grids leading to lower COE and O&M costs</td>
<td>Hardware development and testing – 5 years</td>
<td>Labs, Submarine cable industry, consultants</td>
</tr>
</tbody>
</table>
Focus Area 2: Market Barrier Removal

At the heart of market barrier removal is the effort to increase the efficiency of the current deployment timeline as summarized in figure 8 above. The following discussion of Activities and Research Areas will focus on this goal.

Activity 2.1: Siting and Permitting: In order to meet programmatic goals for offshore wind deployment, permitting and siting timelines and costs need to be reduced; key market, socioeconomic, and environmental risks need to be better understood and mitigated; and strategies to build public acceptance of the technology need to be applied to regions with near-term deployment. Concerted federal investment and engagement—coordinated within and across agencies and in close partnership with states, non-governmental organizations, and other stakeholders—will be required to enable both the short- and long-term success of a vibrant offshore wind industry in the U.S.

While DOE has no legal authority in the siting or regulation of offshore wind installations, the Wind Program can make a significant impact in the planning, siting, and permitting processes by partnering with federal, state, and local agencies that regulate and manage these projects in state and federal waters. By supporting research and analysis to better understand regulatory uncertainties and to identify, reduce, and mitigate key environmental and social science risks and by producing and disseminating critically needed objective information to enable informed decision making by stakeholders, DOE will jumpstart the nascent offshore wind industry.

Efforts in this program area will be targeted at overcoming common barriers currently facing offshore investment and deployment. Priority will be given to efforts leveraging DOE investment with initiatives funded by other federal agencies, state and local governments, and by the private sector, including utilities. The activities supporting implementation of the DOI-DOE MOU Action Plan referenced above will be critical in these initiatives. Research areas will include four broad categories, presented below.

Research Area 2.1.1: Market Perception and Benefits: Development of a utility scale project requires capital investment of hundreds of millions, even billions, of dollars. As experience from land based wind and European offshore wind development have shown, policy options and financial mechanisms can have major impacts on the viability of projects. Credible, objective analysis to inform stakeholders and compare
options is often lacking. In the absence of sophisticated and broadly accepted methods of analyzing costs and benefits associated with these investments, there will continue to be a wide variety of often contradictory data and interpretations on both the public value of offshore wind and its financial viability.

Under this research area, DOE will support the development of standardized methods, models and guidelines for the development of credible information on and tools for the evaluation of the costs and benefits of offshore wind. In addition, DOE will support quantifying relevant positive and negative externalities, such as environmental and socioeconomic impacts, in cost of energy calculations, and support objective analysis of policy and regulatory options related to offshore wind to enable informed decision-making on relevant questions regarding relevant choices at the project, industry, and energy policy levels.

Public acceptance of offshore wind will also be crucial, both to the deployment of specific projects and the long-term success of the industry. The development of offshore wind could pose risks to competing uses, such as fishing, tourism, and military operations; affected communities and organizations will also have concerns that will need to be addressed. Many of these issues will be site-specific, but many will have common themes that DOE is well-placed to address. To identify and better understand the potential socioeconomic impacts of offshore wind energy and the concerns of key stakeholders and communities, DOE will work with BOEM, other interagency partners, and key stakeholders to identify gaps in understanding, followed by targeted research aimed at developing risk mitigation measures and communication strategies to build needed public acceptance of offshore wind.

Research Area 2.1.2: Regulatory Processes: Planning an offshore project requires consideration of hundreds of important environmental and potentially conflicting use factors, as well as compliance with a multitude of regulations enforced by agencies with varying levels of jurisdictional authority. The estimated timeline for project approvals ranges from 7 to 10 years and the regulatory processes remain untested, increasing uncertainty and risk for investors.

DOE will work closely with other federal and agencies at a staff and policy level to develop recommendations to reasonable and efficient permitting timeframes. DOE will also support efficiency in permitting through the support and development of mechanisms such as standardized protocols for baseline planning surveys and monitoring programs, and the development of adaptive management strategies.
Current government planning for offshore wind investments, particularly at a federal level, has taken a first-come-first-serve approach with regard to siting offshore wind projects that may not be optimal to achieve deployment at the speed and scale necessary to meet national objectives. Such an approach, while allowing a greater degree of flexibility to individual developers, misses efficiencies in required baseline data collection, environmental review and other permitting requirements that could be realized through a more proactive process. Properly designed, a proactive approach to siting and permitting may have the potential to significantly accelerate responsible installation of projects and to reduce the permitting costs and risks associated with offshore wind development.

To facilitate a more robust, broad-based siting strategy, DOE will work with other agencies and stakeholders to identify priority areas for offshore development through mechanisms such as the National Ocean Council’s regional coastal and marine spatial planning processes, and will build on ongoing interagency efforts, including DOE’s MOU with DOI, DOI’s state offshore wind energy task forces, and DOI’s MOU with the Atlantic Offshore Wind Energy Consortium, with the ultimate goal of identifying priority development zones for near-term, gigawatt-scale deployment.

Research Area 2.1.3: Environmental Risks: Hundreds of environmental studies have been conducted in Europe in conjunction with offshore wind development. While the U.S. can leverage lessons learned from these studies, few studies have been done in U.S. waters. Consequently, major data gaps exist that can delay and add significant risk for both project developers and regulators seeking to install offshore facilities. Filling these gaps requires upfront investments in long-term, expensive research that—while of long-term benefit to the entire industry—has largely fallen to the first generation of individual project developers.

To better inform the public and decision-makers on the extent of potential environmental impacts, to avoid having individual developers shoulder the high costs of research, and to build the knowledge base, DOE will institute nationally coordinated efforts at gathering and analyzing environmental data and making it available to all stakeholders. This effort will include joint work with other agencies to coordinate identification of gaps and priority risks, analysis of European studies to identify data and conclusions applicable to the U.S., the aggregation and dissemination of existing environmental data through publicly-available databases, the collection of baseline data to fill key gaps, site-specific efforts such as before-after-control-impact (BACI) studies of relevant marine ecology in key geographic areas, development of tools and technologies for cost-effective pre- and post-construction environmental monitoring and mitigation, and development of broadly acceptable integrated environmental risk assessment and decision-making strategies. These investments will take the burden of research off of individual project developers and result in a learning process that will, over time, reduce perception of environmental and statutory risks to
the regulatory and resource management agencies involved, reduce environmental requirements on project developers, and increase community acceptance.

Research Area 2.1.4: Radar and Other Technical Challenges: Potential interference of wind turbine arrays with radar signals presents a serious concern for many stakeholders including commercial aviation and the Departments of Defense and Homeland Security. The Department of Energy is a member of the sub-interagency policy committee on radar. This committee is chaired by the National Security Council and involves representatives from DOD, DHS, FAA, NOAA, and Director of National Intelligence. The committee focuses on identifying and resolving conflicting priorities regarding interaction between wind turbines and radar systems.

In order to effectively characterize the technical challenges and develop mitigation options, analysis of radar/turbine interaction factors will be conducted with key interagency partners. While many offshore radar issues are similar to those associated with land-based systems, there are also circumstances unique to offshore facilities. Therefore, additional research is needed to complement land-based efforts.

OWS Program activities will complement, and will be defined by, the collaborative framework being established for interagency radar investigations. This framework includes:

- Joint assessment studies to inform research needs
- Roadmapping that will prioritize R&D activities by individual agencies and identify opportunities of joint research projects between agencies
- Funded R&D on wind turbine mitigation technologies that can be implemented by the wind industry
- Validation of new technologies that can allow development of the nation’s wind resources without jeopardizing national security missions

A goal of this approach is to dramatically reduce the need for project-by-project technical assistance through broadly accepted technology mitigation measures.

OWS Program-supported research will complement land-based initiatives by identifying offshore specific radar mitigation options for use by the wind industry and radar operators. These efforts will be informed by the experience and investigations carried out in conjunction with the European offshore wind industry, such as tests with integrating supplemental radar systems, and modifications to radar processing software.

Activity 2.2: Complementary Infrastructure: Research efforts will address infrastructure challenges that, if not adequately resolved on a national level, pose significant restrictions to offshore wind market growth and deployment. Priority will be given to efforts leveraging DOE investment with initiatives funded by other federal agencies, state and local governments, and the private sector, including utilities.
Research Area 2.2.1: Manufacturing and Supply Chain Development: The supply chain is defined as the system of manufacture and/or procurement of components, subcomponents and materials that comprise the assembled turbine and completed offshore facility. Domestic infrastructure is critical to the practicality and financial viability of individual offshore projects. Domestic manufacturing and the growth of U.S. based suppliers is also key to asserting global technical leadership and realizing the full economic benefit of the industry. Specific advantages to U.S. manufacture of offshore turbines, tower structures and the balance-of-plant components such as undersea cable lie in reducing transportation and transactional costs in installation and operational periods.

In addition to offering financial incentives such as tax credits and loan guarantees, DOE will provide technical support to companies seeking to supply offshore turbines and components, and to economic development agencies seeking to establish manufacturing facilities in their regions. The goal for this effort is to coordinate, facilitate, and leverage research activities at national laboratories, universities, and other agencies such as the U.S. Dept. Interior to facilitate U.S.-based manufacture, assembly, transport and O&M of wind turbines systems components. Such support includes studies needed to optimize integrated manufacturing and installation strategies; manufacturing process R&D for components such as blades; and analyses of critical material supply and demand factors to be faced by the growing industry.

Research Area 2.2.2: Transmission Planning and Interconnect Strategy: Offshore projects are being planned in close proximity to major urban load centers, requiring interconnection with some of the country’s major energy service providers. Grid interconnection studies are required to ensure that the impacts of large concentrations of offshore wind generation facilities on these transmission networks are properly understood and can be effectively integrated into the day-to-day power management strategies of the utilities; in addition to identifying system upgrades needed for reliable interconnection.

Studies will also assess the value of these utilities receiving offshore wind energy versus energy from other sources or regions; and the potential value to the East Coast grid of an extended offshore electric delivery network.
The OSWInD Initiative will collaborate with DOE’s Office of Electricity Delivery and Energy Reliability (OE) in developing a long-range DOE approach to characterize and address the needs for transmission planning and interconnection strategies specific to offshore wind energy. The following near-term research activities will support OE-led interconnect-wide transmission planning and address related long-range industry needs and utility challenges.

- Technology/Industry Characterization
- Initial Integration Analysis
- Collaborative Utility Studies
- Advanced Technology Assessments

Research Area 2.2.3: Ports, Vessels and Operations: Offshore wind provides an opportunity for revitalization of a number of U.S. port and heavy industry facilities. Due to the large scale of offshore wind turbine components and tower/foundation structures it is advantageous to limit or eliminate overland transport from the most effective assembly and installation scenarios. In addition, European experience has clearly indicated that it will be necessary to create a purpose-built installation, operations, and maintenance (IO&M) infrastructure for offshore wind, including specialized vessels and port facilities. To assist industry and regional port facilities in making informed decisions regarding requirements for and design of IO&M infrastructure, DOE will participate in collaborative needs and capabilities studies for the benefit of all national regions.

A significant portion of the cost differential between land-based and offshore systems lies in the transport and erection requirements. European experience indicates that specialized wind system installation vessels, rather than adapted oil and gas vessels, will be required to cost-effectively meet high volume installation needs. DOE will support development of integrated manufacturing, transport, installation, and maintenance strategies leading to specialized vessels, safety systems, and tooling.

O&M analysis and planning at the onset of design and development of projects can contribute significantly to reduction of the Cost of Energy by optimizing system reliability and availability. Through maintainability analysis, taking into account projected reliability of components and periods of access limitations, this effort can support accurate energy production estimates as well as providing targeted reliability goals at a component and vessel fleet level. The program will include establishment of operations databases and development of advanced O&M strategies based on data analysis targeted at improving asset management.
Activity 2.3: Resource Planning: In order to assess potential offshore project sites and establish zones of prioritized activity, it is essential to have accurate field data, mapping and databases. Although many agencies, universities and other organizations have programs nominally addressing offshore data needs, there has been no national scale coordination to integrate these efforts in meeting an agreed upon set of data needs for the offshore industry. This OWS Program activity will ensure a nationally coordinated effort to collect and disseminate data for use in planning individual projects and carrying out critical marine spatial planning activities in support of responsible offshore wind development.

Most meteorological, wave, and seabed data used in assessing potential offshore wind sites is based on extrapolations of data from on-shore sites, buoys or limited surveys. Such projections have not been validated for accuracy. Little wind data has been gathered at actual offshore sites due the cost and lack of practical instrumentation. Similarly, little data exists on seabed conditions required to design foundations and plan cable trenching. These data are critical in assessing the costs, energy production, design requirement and overall economic viability of projects.

DOE will collaborate with other agencies such as DOI, NOAA and US Army Corps of Engineers in establishing common databases, ensuring that available data is utilized, supporting new measurement initiatives, and funding development of advanced instrumentation technology.

Research Area 2.3.1: Resource Characterization: DOE’s memoranda of understanding with the DOI and NOAA establish a framework for effective national collaboration and for defining the highest priority research areas related to characterization of wind resources. This collaborative framework consists of the following key resource characterization planning activities:
• Engagement of industry experts and formation of an Interagency Working Group

• Preparation of a Data Requirements Document identifying exactly which data - collected and compiled to specified protocols - is needed by the offshore industry

• Completion of a Gaps Analysis to determine the relevance of existing data, the best sources of data in the future, required modeling and extrapolation software and recommendations for advanced technology development

• Kick-off of a long-range Implementation Plan that acts as a roadmap for OWS and national partners in coordinating and supporting the specific activities needed meet the stakeholder needs defined in the activities above.

Research initiatives to be informed by these planning activities include a resource characterization campaign for the Outer Continental Shelf and Great Lakes; mesoscale atmospheric modeling to predict long range weather trends; analysis of extreme events such as hurricanes; assessment and refinement of advanced instrumentation and methodologies; and joint efforts in establishment of GIS databases and methods.

Research Area 2.3.2: Facility Design Conditions: To support reliable and safe offshore plant design and provide data for emerging marine spatial planning activities, a long term concerted effort to collect and disseminate critical field information beyond wind characteristics is needed. This data provides the basis for technical requirements governing structural design and establishes operating parameters of turbines, towers and balance of plant structures and cables. Application of these requirements to facility design impact determinations of practicality, reliability and economic viability.

For instance, information on water depth, current, seabed migration, and wave action is used to study mechanical and structural loading on potential turbine configurations, assessing impacts of external site-specific conditions, in terms of both survival during extreme loading and long-term fatigue damage and degradation. Other quantifiable factors of the design environment include marine-growth, tidal forces, salinity, and icing, as well as the geotechnical characteristics of the sea or lake bed.

Figure 22. Understanding External Conditions To Define the Design Parameters (DOE)
The first steps toward making this design and planning information available are a gaps analysis to identify critical non-wind data and assess best means of collection; and implementation of a plan establishing a national network to make the data available and support required research and development. These activities will leverage the existing knowledge base of ocean engineering established by the oil and gas industry.

Figure 16 constructs a timeline for the execution of the details and stages of technology development and market barrier removal research areas.
Table 5: Details of Activity 2.1

<table>
<thead>
<tr>
<th>Research Area</th>
<th>Title</th>
<th>Sub-task</th>
<th>Deliverable</th>
<th>Impact</th>
<th>Timeline</th>
<th>Partners</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1 Policy and Public Acceptance</td>
<td>1</td>
<td>Ongoing policy and market analysis</td>
<td>Annual market data report and analysis of emergent policy and economic questions</td>
<td>Reduced information barriers to investment; better decisions by policy makers and other stakeholders</td>
<td>2011: First market report; Ongoing: Policy and market analysis</td>
<td>NREL and other National Labs as required</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Offshore Costs & Benefits Analysis</td>
<td>Standard methodologies for project costs & benefits evaluation, including quantification of externalities and COE analysis of non-technology barriers and costs</td>
<td>Allow apples-to-apples comparison of offshore wind with competing generation technologies to enable informed decision making</td>
<td>2011: Methodologies developed; Ongoing: Follow-on work as necessary</td>
<td>National Labs, private sector consultants, universities</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Economic and Public Acceptance Risk Reduction</td>
<td>Studies to improve understanding of and mitigation options for key socioeconomic and public acceptance risks; targeted engagement of key stakeholders through publications, electronic media, workshops, etc</td>
<td>Reduced study costs to developers, reduced permitting and NEPA timelines, reduced risks to investors, regulators, improved public acceptance of OSW</td>
<td>2011: Conduct gap analysis 2011: Develop collective research agenda; issue first solicitation for key research 2012-2015: Follow-on research as needed</td>
<td>Universities, Labs, NGOs, developers, State and Federal regulatory agencies, other stakeholders</td>
</tr>
<tr>
<td>2.1.2 Regulatory Processes</td>
<td>1</td>
<td>Efficient Regulatory Processes</td>
<td>Recommendations to increase efficiency of Federal and State project authorization processes and shorten timelines; standardized protocols for environmental monitoring and mitigation; adaptive management strategies</td>
<td>Decreased timeline and risks associated with siting and permitting to both developers and regulators</td>
<td>2011: Develop recommendations; solicit for standardized protocols 2012-2015: Finalize protocols, conduct follow-up research as necessary</td>
<td>DOI: BOEM, FWS, other DOI agencies; NOAA; State and regional organizations</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Proactive Planning and Siting</td>
<td>Coastal and Marine Spatial Planning (CMSP) to identify zones for near-term, GW-scale deployment; improved broad-scale environmental and ocean use data; plan for potential research leases</td>
<td>Accelerated deployment in priority regions; reduced environmental study costs to developers; reduced permitting timelines; reduced long-term risks to investors and regulators</td>
<td>2011: Identify high-potential zones; 2011-2015: Participate in NOC-led CMSP processes; provide technical support as necessary</td>
<td>DOI: BOEM, FWS, other DOI agencies; NOAA; State and regional organizations</td>
</tr>
</tbody>
</table>
Table 6: Details of Activity 2.1 (cont’d)

<table>
<thead>
<tr>
<th>Research Area</th>
<th>Title</th>
<th>Sub-task</th>
<th>Deliverable</th>
<th>Impact</th>
<th>Timeline</th>
<th>Partners</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.3</td>
<td>Environmental Risks</td>
<td>1</td>
<td>Environmental Risk Reduction</td>
<td>Improved environmental monitoring technologies; broad-scale environmental baseline data to fill key gaps; significantly enhanced understanding of wide range of environmental impacts</td>
<td>Reduced environmental study costs to developers, reduced permitting and NEPA timelines, reduced environmental and statutory risks to investors, regulators</td>
<td>2011: Conduct gap analysis and monitoring technology roadmap; issue first solicitation; 2012-2015: Conduct needed multi-year studies, solicit follow-on work as needed</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Radar</td>
<td>1</td>
<td>Radar Outreach and Mitigation Techniques</td>
<td>Evaluation of potential radar challenges within the OCS and engage key stakeholder to proactively develop mitigation options</td>
<td>Effective mitigation menu for radar and turbine technologies that supports synergistic mission (i.e. energy production and agency mission)</td>
<td>2011: Quantify potential radar challenges; issue first solicitation 2012-15: Develop mitigation options; solicit follow-on work as needed</td>
</tr>
</tbody>
</table>
Table 7: Details of Activity 2.2

<table>
<thead>
<tr>
<th>Research Area</th>
<th>Title</th>
<th>Sub-task</th>
<th>Deliverable</th>
<th>Impact</th>
<th>Timeline</th>
<th>Partners</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1 Domestic Manufacturing and Supply Chain Development</td>
<td>National Infrastructure Assessment and Development Strategy</td>
<td>1</td>
<td>Quantify existing and potential infrastructure needs and supplier opportunities as well as critical path to effective growth</td>
<td>Enhanced likelihood of efficient buildup of national scale infrastructure to meet industry needs.</td>
<td>2011 - 2012</td>
<td>NL, Industry, States, Agencies, …</td>
</tr>
<tr>
<td></td>
<td>Manufacturing Improvement Techniques</td>
<td>2</td>
<td>Quantify existing and potential component needs and supplier opportunities. Identify technical pathway for market entry of large offshore components</td>
<td>Manufacturing strategy targeted at the build-out of a robust supply chain</td>
<td>2012 - 2013</td>
<td>NL, Industry, States, Agencies, …</td>
</tr>
<tr>
<td>2.2.2 Transmission Planning & Interconnect Strategies</td>
<td>Technology/Industry Characterization</td>
<td>1</td>
<td>Provide baseline information on projected scale of offshore wind industry, deployment scenarios, technology and power production characteristics</td>
<td>Primary target for activity: interconnect-wide planning collaboratives</td>
<td>2011</td>
<td>OE, NL, Industry, Utilities, UWIG, …</td>
</tr>
<tr>
<td></td>
<td>Initial Integration Analysis</td>
<td>2</td>
<td>Assess offshore applicability of current wind integration “solution sets”.</td>
<td>Identify gaps and recommend activities to address them in operational integration studies.</td>
<td>2011 - 2012</td>
<td>OE, NL, Industry, Utilities, UWIG, …</td>
</tr>
<tr>
<td></td>
<td>Collaborative Utility Studies</td>
<td>3</td>
<td>Case studies and joint analysis carried out with utilities having large-scale offshore wind development proposed in their service areas.</td>
<td>Activities will be based on integration concerns and technical challenges identified by partner organizations</td>
<td>2011 - 2014</td>
<td>OE, Utilities, UWIG, …</td>
</tr>
<tr>
<td></td>
<td>Advanced Technology Assessments</td>
<td>4</td>
<td>Identify potential advanced marine grid and interface hardware designs such as HVDC offshore “backbone”; marinized substations; advanced undersea cable concepts; optimized inter-array grids.</td>
<td>Technical analyses will be focused on advancements that lower costs, increase reliability, reduce risks or facilitate acceptance.</td>
<td>2011 - 2015</td>
<td>OE, NL, Industry, Utilities, UWIG, …</td>
</tr>
</tbody>
</table>
Table 8: Details of Activity 2.2 (cont’d)

<table>
<thead>
<tr>
<th>Research Area</th>
<th>Title</th>
<th>Sub-task</th>
<th>Deliverable</th>
<th>Impact</th>
<th>Timeline</th>
<th>Partners</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.3. Ports, Vessels and Operations</td>
<td>1</td>
<td>Optimized IO&M Strategies</td>
<td>Analysis and models to identify the most practical means of reducing cost of energy through IO&M techniques and supporting infrastructure while ensuring safety.</td>
<td>Required for effective decision making by industry</td>
<td>2011 - 2012</td>
<td>NL, Industry, ...</td>
</tr>
<tr>
<td>2.2.3. Ports, Vessels and Operations</td>
<td>2</td>
<td>Vessels, Facilities & Technology for Installation, Operations & Maintenance</td>
<td>Stage 1 - Identify needs, solutions, costs and timeframes for development; Stage 2 - Technical and financial support</td>
<td>Enhance efficient buildup of national scale infrastructure to meet industry needs.</td>
<td>Stage 1 - 2011; Stage 2 - 2012-2015</td>
<td>NL, Industry, States, Agencies, ...</td>
</tr>
<tr>
<td>2.2.3. Ports, Vessels and Operations</td>
<td>3</td>
<td>Develop Reliability Framework and O&M Priorities</td>
<td>Ongoing reliability characterization and analysis reporting. Stage 1 - Plan; Stage 2 - Implementation</td>
<td>Database that gathers/provides information targeted at improving reliability and asset management</td>
<td>Stage 1 - 2011; Stage 2 - 2012-2015</td>
<td>NL, Industry, ...</td>
</tr>
</tbody>
</table>
Table 9: Details of Activity 2.3

<table>
<thead>
<tr>
<th>Research Area</th>
<th>Title</th>
<th>Sub-task</th>
<th>Deliverable</th>
<th>Impact</th>
<th>Timeline</th>
<th>Partners</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.1</td>
<td>Resource Characterization (Wind)</td>
<td>1</td>
<td>Data Gaps Analysis</td>
<td>Planning report assessing national status and future needs with respect to meeting predetermined industry and stakeholder data requirements</td>
<td>2011</td>
<td>NL, Industry, Academia, NOAA, NWS, BOEM, NCAR, DoD, NSF…</td>
</tr>
<tr>
<td>2.3.1</td>
<td></td>
<td>2</td>
<td>National Resource Database Plan</td>
<td>Plan to establish network of instrumentation, databases and protocols to meet pre-determined data requirements</td>
<td>2011</td>
<td>NL, Industry, Academia, NOAA, NWS, BOEM, NCAR, DoD, NSF…</td>
</tr>
<tr>
<td>2.3.1</td>
<td></td>
<td>3</td>
<td>Refined Mesoscale Modeling & Mapping</td>
<td>Reliable OCS and Great lakes mesoscale models and user tools</td>
<td>2011 - 2015</td>
<td>NL, Industry, Academia, NOAA, NWS, BOEM, NCAR, DoD, NSF…</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Facility Design Conditions</td>
<td>1</td>
<td>Data Gaps Analysis</td>
<td>Report identifying critical non-wind data for turbine, foundation and balance of plant design such as water depth, currents, seabed mechanics, wave action, and ice loading and recommend means to collect data for national and regional use</td>
<td>2011</td>
<td>NL, Industry, Academia, NOAA, NWS, BOEM, NCAR, DoD, NSF…</td>
</tr>
<tr>
<td>2.3.2</td>
<td></td>
<td>2</td>
<td>National Offshore Planning Database</td>
<td>Interagency and multi-organization plan to establish national network to collect and make critical data available</td>
<td>2012 - 2013</td>
<td>NL, Industry, Academia, NOAA, NWS, BOEM, NCAR, DoD, NSF…</td>
</tr>
</tbody>
</table>
Figure 23. Research Area and Detail Timeline in Quarters and Years
Focus Area 3: Advanced Technology Demonstration Projects

DOE issued a Request for Information (RFI) on June 15, 2010 seeking input from the public on the research, development, and deployment of offshore wind demonstration projects. Under this RFI, DOE sought specific information for targeting limited federal resources on activities with the highest potential for positive impact to the benefit of all stakeholders, including growth of the national knowledge base. 123 responses were received from 113 individual parties including developers, research universities, federal and state organizations, environmental and wind industry groups, members of the public, and broad consortia of all of these. A wealth of information was received on numerous topics and the types of support activities and technical assistance DOE could provide in order to have the greatest impact on reducing demonstration project cost, timeline to deployment, and risks – technical, financial, environmental, or social.

Example input from the RFI:

“...the greatest positive impact from [DOE] demonstration projects would be those that can demonstrate [offshore wind in the US] while also simultaneously performing other functions important for a new product, such as testing, validation or certification. ...Such combined activities provide a large multiplier on the benefit, with little increase in project cost.” University of Delaware

“...Experiment with attached growth and artificial reef development. Compare the overall impact and benefits to the environment and wildlife of a wind turbine in the marine environment.” Sierra Club

“...Development of specific design requirements for offshore wind turbines, starting with a clear definition of the reliability, availability and maintainability requirements, similar to those in other industries such as conventional power generation, rail, and aerospace would be extremely valuable for the developing offshore wind power industry in the US. As such, DOE should support development of these requirements and facilitate collaboration between relevant stakeholders.” Boulder Wind Power

Demonstration Project Funding: The Department anticipates allocating 30% of its FY2011 budget for offshore wind to advanced technology demonstration projects. By partnering in innovative projects and test facilities, DOE will accelerate market development, reduce industry risk, and enable field testing of technology developments.

Through cost-sharing initiatives, chosen through competitive solicitations, DOE will partner with one or more commercial developers, research consortia, power producers and/or utilities on at least three groundbreaking and diverse offshore projects with the goal of jumpstarting the offshore wind industry and increasing the common knowledge base for all industry stakeholders. DOE proposes issuing competitive funding opportunities to potential partners who demonstrate a minimum awardee cost share of 50%.

Projects: DOE proposes that the demonstration projects are diversified by geographical region, water depths, and innovative technologies. Consideration will be given to regions or states in which either wind research or commercial leases already have been proposed or have commenced, those in which
federal or states have issued public Requests for Information, and/or those where initial environmental studies have been commenced or completed.

Activities: Use of DOE funds will include, but is not limited to:

- Innovative engineering activities (foundations and electrical systems, facility infrastructure, installation systems and methods)
- Field testing (use of designated turbines and foundation structures as industry R&D test-beds, which could include grid interconnection)
- Identification of research gaps and market barriers related to the marine environment (including resource assessment, environmental and socio-economic research, efficiency in state and/or federal permitting, planning, and siting) and development of reports and a knowledge base for industry.

Project success will advance industry expertise in engineering, facility design, installation, and federal and state siting processes. Success will be measured by verification of advanced technologies, installation of testing facilities, and advancement toward DOE deployment goals.

High Impact: Successful deployment of advanced technology demonstration projects will make offshore wind cost-competitive with other generation through reduction of uncertainties and refinement of technology. In addition, it will catalyze the nascent commercial offshore wind industry resulting in gigawatt-scale deployment of offshore wind technology.

The OSWInD Initiative seeks to provide support for Advanced Technology Demonstration Projects through collaborative partnerships. By providing funding, technical assistance and government coordination to accelerate deployment of these demonstration projects, the Initiative can help eliminate uncertainties, mitigate risks, and facilitate the development of the U.S. Offshore Wind Industry.

Within these demonstration partnerships, DOE may fund specific technical research, engineering, and planning activities that demonstrably enhance the timely execution of innovative commercial or research-based offshore wind energy projects. DOE funds may also support capital expenditures within these projects for materials or equipment that are clearly necessary to achieve the technology demonstration benefits of the project, to the extent those benefits are clearly supported in the applicant’s proposal.

Projects will be sought that are diverse in geographical region, water depth, and innovative technology. Applicants will be encouraged to convey how project success will advance industry expertise in engineering, facility design, installation, performance evaluation and key federal or state siting processes; as well as further industry acceptance by key institutions, such as the public at large and the finance industry, through reduced risks and uncertainties.

Recognizing the magnitude and complexity of these industry challenges, DOE will investigate partnering with broad consortia having world-class capabilities and resources. Membership of such a consortium could include a world-class research entity, a major public or private utility, a transmission company, an
offshore wind developer, an original equipment manufacturer (OEM) team capable of manufacturing all components of an offshore wind turbine system, marine installation specialists with experience in the marine environment, and a state or local government.

A detailed discussion of the deployment timeline for a proposed project is a key consideration when looking at a potential partnership. Projects that do not begin construction by 2015 will not be considered. The deployment timeline discussion should include feasible, innovative, and collaborative solutions to addressing current market barriers to deployment.

Key criteria that DOE will consider in evaluating potential partnerships will include:

- Cost share
- Relative strength of collaborative partnerships
- Demonstrated technical expertise
- Progress to date toward project deployment, particularly in siting and permitting
- How DOE funds/support would accelerate realization of project goals
- How the project success would advance industry knowledge base
- How the project would support innovative research
- Support from State and local communities
- Feasibility of proposed deployment timeline